Exercise 9

For each of the following integral equations, classify as Fredholm, Volterra, or Volterra-Fredholm integral equation and find its kind. Classify the equation as singular or not.

$$
u(x)=\frac{3}{2} x+\frac{1}{6} x^{3}-\int_{0}^{x}(x-t) u(t) d t-\int_{0}^{1} x u(t) d t
$$

Solution

This is a Volterra-Fredholm integral equation because the unknown function u appears inside two (disjoint) integrals, a Volterra integral where one of the limits of integration is not constant and a Fredholm integral where the limits of integration are constant. The integral equation is of the second kind because u appears both inside and outside the integrals. It's inhomogeneous because of the $(3 / 2) x+(1 / 6) x^{3}$. It's not singular since none of the limits of integration are infinite and the integrands do not become infinite in the intervals of integration.

